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Introduction 

 Belgian Mathematician and Sociologist Pierre Francois Verhulst
1
 

was introduced Logistic differential equation to model the growth of 
populations limited by finite resources. The Logistic differential equation is 
given by 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃  1 −

𝑃

𝐾
 ……… . (1) 

Here 𝑃 𝑡  is called the population size at time 𝑡 and 
𝑑𝑃

𝑑𝑡
 gives the 

change in population size over time 𝑡. (1) contains two positive parameters 

namely 𝑟 and 𝐾. The first parameter 𝑟 is called the growth parameter and 
second parameter is called the carrying capacity. Solow[2] used Logistic 
differential equation to discussed a contribution to the theory of economic 
growth. 

Runge-Kutta fourth order (RK-4) method was developed around 
1900 by the German mathematicians C. Runge and M.W. Kutta. The RK-4 
method is a method of order four, meaning that the total accumulated error 
is on the order of 𝑜 ℎ4  while the local truncation error is on the order 

of 𝑜 ℎ5 . A history of Runge-Kutta methods was given by Butcher
3
. 

Dormand and Prince
4
 gave a family of embedded Runge-formulae. Zingg 

and Chisholm
5
 discussed the Runge-Kutta method for linear ordinary 

differential equation. Milne
6
 gave a note on the Runge-Kutta method. Cash 

and Karp
7
 established a variable order Runge-Kutta method for initial value 

problems with rapidly varying right hand sides. Ralston
8
 gave Runge-Kutta 

method with minimum error bounds. An order bound for Runge-Kutta 
method was given by Butcher

9
. Bogacki and Shampine

10
 explained 3(2) 

pair of Runge-Kutta formulas. A modification of the Runge-Kutta fourth 
order method was given by Blum

11
. Cash

12
 used a class of implicit Runge-

Kutta methods for numerical integration of stiff ordinary differential 
equations. Mehdi and Kareem

13
 solved L𝑢  chaotic system using fourth 

order Runge-Kutta method. Yang and Sten 
14

 applied Runge-Kutta method 
for solving uncertain differential equations. Enright and Muir

15
 used efficient 

classes of Runge-Kutta methods for two point boundary value problems. 
Application of the fourth order Runge-Kutta method for the solution of high-
order general initial value problems was given by Cortell

16
. Yaakub and 

Evans
17 

established a fourth order Runge-Kutta RK(4,4) method with error 
control. Estimating the error of the classic Runge-Kutta formula introduced 
by Hosea and Shampine

18
. A simplified derivation and analysis of fourth 

order Runge-Kutta method was given by Musa et.al.
19

. 
This paper uses Runge-Kutta fourth order(RK-4) method to solve 

Logistic differential equations. The advantage of this proposed method is 
its capability for obtaining exact solution without any difficulty and spending 
a very little time. The aim of this work is to establish exact solution or 
approximate solution of high degree of accuracy for Logistic differential 
equations using Runge-Kutta fourth order(RK-4) method. 
 

Abstract 
In this paper, Runge-Kutta fourth order (RK-4) method is 

employed to obtain approximate solution of Logistic differential equations 
which are first order non-linear differential equations used in to model the 
growth of populations. The results show that method converges rapidly 
and approximates the exact solution very accurately. 
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 Runge-Kutta Fourth Order (RK-4) method for First 
Order I.V.P. 

Consider the first order I.V.P. 
𝑑𝑦

𝑑𝑥
=

𝑓 𝑥, 𝑦 …… (2) with 𝑦 𝑥0 = 𝑦0 …………… (3) 

By Runge-Kutta fourth order(RK-4) method, the 
sequence of approximation for 𝑦 is given by 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4  

𝑥𝑛+1 = 𝑥𝑛 + ℎ, for 𝑛 = 0,1,2,3, . ..  
𝑘1 = ℎ𝑓 𝑥𝑛 , 𝑦𝑛  

𝑘2 = ℎ𝑓  𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
  

𝑘3 = ℎ𝑓  𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
  

𝑘1 = ℎ𝑓 𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3  
Here ℎ is the interval between equidistant 

values of 𝑥. 
Logistic differential equation which is given 

by  1  with initial condition 𝑃 𝑡0 = 𝑃0can be treat as a 

first order initial value problem given by  2 & 3  and 

solved by the above discussed method. 
Stability and Conditioning 

If in an initial value problem, the small 
changes either in function 𝑓 or in the initial condition 

induces large effects on the solution of the problem 
then the problem is said to be ill-conditioned or 
unstable. Conversely, a problem is said to be well-
conditioned or stable if small changes in the data 
induces small changes in the corresponding solution 
of problem. 

A solution 𝑦 𝑥  of initial value problem  2  
with initial condition  3  is said to be stable with 

respect to the initial condition  3  if, given any ∈ > 0, 

there is a 𝛿 > 0 such that any other solution 𝑦  𝑥  of 
 2  with initial condition  3  satisfying 
 𝑦 𝑥 − 𝑦  𝑥  ≤∈ whenever  𝑦 𝑥0 − 𝑦  𝑥0  ≤ δ for all 

𝑥 > 𝑥0 .   ………………. 4  
C-Program of Runge-Kutta Fourth Order (RK-4) 
Method for First Order Initial Value Problems 

#include<stdio.h> 
#include<conio.h> 
#include<math.h> 
float f(float x, float y) 
{return 0.08*y-0.00008*y*y+0*x;} 
int main() 
{ float x0,y0,h,k1,k2,k3,k4,y1,x; 
int iter,i; 
clrscr(); 
printf("Enter the value of x0 and y0 \n"); 
scanf("%f%f",&x0,&y0); 
printf("Enter the value of h \n"); 
scanf("%f",&h); 
printf("Enter the value of iteration"); 
scanf("%d",&iter) ; 
for(i=1;i<=iter;i++) 
{ 
x=x0+h; 
 k1=h*f(x0,y0); 
k2=h*f(x0+h*0.5,y0+k1*0.5); 

k3=h*f(x0+h*0.5,y0+k2*0.5); 
k4=h*f(x0+h,y0+k3); 
y1=y0+0.16666*(k1+2*k2+2*k3+k4); 
printf("the value of y=%f at x=%f\n",y1,x); 
x0=x; 
y0=y1; 
} 
getch(); 
return 0; 
} 
Applications 

In this section, some applications are given 
in order to demonstrate the effectiveness of Runge-
Kutta fourth order (RK-4) method to solve Logistic 
differential equations. 
Application: 1  

The Logistic differential equation 1  with 

growth parameter 𝑟 = 1, carrying capacity 𝐾 = 10 and 

𝑃 0 = 2  is given by 
𝑑𝑃

𝑑𝑡
= 𝑃  1 −

𝑃

10
  …………………… 5  

with  𝑃 0 = 2……………………… 6  
Application: 2 

The Logistic differential equation 1  with 

growth parameter 𝑟 = 1, carrying capacity 𝐾 = 1 and 

𝑃 0 = 5  is given by 
𝑑𝑃

𝑑𝑡
= 𝑃 1 − P  …………………… 7  

with  𝑃 0 = 5……………………… 8  
Application: 3 

The Logistic differential equation 1  with 

growth parameter 𝑟 = 0.08, carrying capacity 𝐾 =
1000 and 𝑃 0 = 100  is given by 
𝑑𝑃

𝑑𝑡
= 0.08𝑃  1 −

𝑃

1000
  …………………… 9  

with  𝑃 0 = 100……………………… 10  
Application: 4 

The Logistic differential equation 1  with 

growth parameter 𝑟 = 0.25, carrying capacity 𝐾 = 20 

and 𝑃 0 = 1  is given by 
𝑑𝑃

𝑑𝑡
= 0.25𝑃  1 −

𝑃

20
  …………………… 11  

with  𝑃 0 = 1……………………… 12  
Output of Application: 1 
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 Output of Application: 2 

 
Output of Application: 3 

  
Output of Application: 4 

 
Comparison between exact and RK-4 method solutions 

Application: 1 

𝑥 Exact Solution 𝑦 𝑥  RK-4 Method Solution 𝑦 𝑥  
0.1 2.164807 2.164800 

0.2 2.339223 2.339209 

0.3 2.523167 2.523145 

0.4 2.716446 2.716415 

0.5 2.918751 2.918711 

0.6 3.129649 3.129598 
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Application: 2 

𝑥 Exact Solution 𝑦 𝑥  RK-4 Method Solution 𝑦 𝑥  
0.1 3.621482 3.621821 

0.2 2.898421 2.898755 

0.3 2.454919 2.455187 

0.4 2.156362 2.156574 

0.5 1.942594 1.942764 

0.6 1.782688 1.782826 

Application: 3 

𝑥 Exact Solution 𝑦 𝑥  RK-4 Method Solution 𝑦 𝑥  
0.1 100.722308 100.722282 

0.2 101.449244 101.449188 

0.3 102.180831 102.180748 

0.4 102.917089 102.916977 

0.5 103.658041 103.657898 

0.6 104.403706 104.403534 

Application: 4 

𝑥 Exact Solution 𝑦 𝑥  RK-4 Method Solution 𝑦 𝑥  
0.1 1.024019 1.024018 

0.2 1.048583 1.048581 

0.3 1.073703 1.073700 

0.4 1.099389 1.099386 

0.5 1.125654 1.125649 

0.6 1.152508 1.152502 

Comparison between Exact and RK-4 Method Solutions by Graphical Representation using above Data 
Application 1 

 
Application 2 
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Application 3 

 
Application 4 
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 Conclusion 

In this paper, we have successfully 
developed the Runge-Kutta fourth order (RK-4) 
method to solve the Logistic differential equations and 
comparison between exact and RK-4 method 
solutions are given in graphical and tabular form. The 
given applications show that the RK-4 method 
needless computational work to obtained solution of 
Logistic differential equations with high degree of 
accuracy. 
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